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Abstract. We use a scaling procedure based on averaging Poisson distributed random vari-
ables to derive population level models from local models of interactions between indi-
viduals. The procedure is suggested by using the idea of hydrodynamic limits to derive
reaction-diffusion models for population interactions from interacting particle systems. The
scaling procedure is formal in the sense that we do not address the issue of proving that it
converges; instead we focus on methods for computing the results of the scaling or deriving
properties of rescaled systems. To that end we treat the scaling procedure as a transform,
in analogy with the Laplace or Fourier transform, and derive operational formulas to aid in
the computation of rescaled systems or the derivation of their properties. Since the limit-
ing procedure is adapted from work by Durrett and Levin, we refer to the transform as the
Durrett-Levin transform. We examine the effects of rescaling in various standard models,
including Lotka-Volterra models, Holling type predator-prey models, and ratio-dependent
models. The effects of scaling are mostly quantitative in models with smooth interaction
terms, but ratio-dependent models are profoundly affected by the scaling. The scaling trans-
forms ratio-dependent terms that are singular at the origin into smooth terms. Removing
the singularity at the origin eliminates some of the unique dynamics that can arise in ratio-
dependent models.

1. Introduction

Ecological processes are distributed in space and time and occur on a wide range of
spatio-temporal scales (O’Neill 1989). Interactions between individuals are inher-
ently local, but the spatial scale of what is local may vary greatly from one organism
to another. Local interactions summed over space combine to produce effects at the
level of populations, but the dynamics of large distributed populations may be quite
different from those of local subpopulations. This dichotomy was observed in the
famous experiments of Gause (1935) which showed that species which typically
coexist in nature may not be able to do so in a small, homogeneous environment.
The entire metapopulation approach to spatial modeling is based on the idea that
local populations can be expected to go extinct but at a larger scale recolonizations
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can allow a spatially distributed population to persist (Hanski 1996). In principle
it might be desirable to formulate an ecosystem theory based on the behaviors of
individual organisms and the consequences of those behaviors, but in practice, such
a theory would necessarily be so complex as to be useless. Thus, it is highly desir-
able to find ways of rescaling systems from smaller to larger scales which preserve
some important features of local interactions but allow enough simplification for
tractability (Levin and Pacala 1997, Levin 2003). One approach to rescaling spa-
tially distributed interactions at discrete sites up to a model for the dynamics of the
overall population on a larger spatial scale is to take spatial averages of densities
and vital rates in a way that yields a model for the dynamics of the average densities.
In general the average of a function depending on population density may not be
the same as the value of that function evaluated at the average density, so some care
must be taken in this process. There are many possible ways of averaging popula-
tion dynamics across space; see (Levin and Pacala 1997, Chesson 2000, Kshatriya
and Cosner 2002) for some examples and discussion. In this paper we will study
a method of averaging based on computing the expectations of functions of Pois-
son distributed random variables. This method is used in computing hydrodynamic
limits of interacting particle systems to obtain reaction-diffusion models (Durrett
and Levin 1994), but the method can also be used in other modeling approaches
(Chesson 2000). In some cases spatial averaging of models can change their predic-
tions. This phenomenon is noted in the context of hydrodynamic limits by Durrett
and Levin (1994), but also occurs in other contexts (Pacala and Roughgarden 1982,
Chesson 2000, Kshatriya and Cosner 2002). Chesson (1997) has introduced the
term scale transition to describe such effects. The main goals of this paper are to
develop methods and results that give some insight into the effects of the sort of
averaging that arises in taking hydrodynamic limits of interacting particle systems
and to use those methods and results to explore the extent to which this type of aver-
aging can result in scale transition in some common types of models. The notion
of averaging which arises in the process of taking hydrodynamic limits involves
computing the means of functions of Poisson distributed random variables. This
averaging process also can be used in some models that are not based on interacting
particle systems, for example the types of models discussed by Chesson (2000). In
this paper we will first describe effects that occur in all modeling contexts, and then
we will address those that are specific to interacting particle systems. To clarify
those aspects relating to interacting particle systems we give a brief review of how
those systems work.

There are many issues related to connecting individual based models or models
which explicitly count the number of individuals at each location with continuum
models such as reaction-diffusion systems or models based on dispersal as described
by integral kernels. (See (Tilman and Kareiva 1997) for a survey of spatial models
in ecology and related areas.) There are also a number of issues which arise in
rescaling models across different spatial and temporal scales. We will not attempt
to review these topics systematically, but we will cite a few references to indicate
where this paper is focused relative to the broader issues of connecting models of
different types and understanting the effects of scaling. Transferring information
from one scale to another or accounting for the presence of multiple spatial and tem-
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poral scales is an issue even within the context of continuum models operating at the
mesoscale or macroscale. Predator-prey models which incorporate multiple spatial
scales by using reaction-diffusion models for the prey and spatially discrete immi-
gration/emigration models for the predators are treated analytically in (Cantrell and
Cosner 1996). Although the title of their paper indicates otherwise, Gao et al. (2001)
treat scaling problems arising from changing the grid size in numerical solutions
of reaction-diffusion models. Specifically, they assume that landscape dynamics
can be described by a reaction-diffusion system (Gao et al. 2001, equation (1))
and ask how the numerical scheme for solving the reaction-diffusion model by dis-
cretization should be modified when the resolution, i.e. the mesh size of the grid,
is changed. That problem of going from continuous to discrete modeling is in a
sense the inverse of the type of problem we shall consider, where the goal is to start
with a discrete model and rescale it into a continuum model. As noted previously,
that is the same issue that is addressed from the viewpoint of more or less rigor-
ous mathematics by Durrett and Levin (1994). Even more rigorous treatments of
the underlying mathematics are given in (DeMasi and Presutti 1991, Spohn 1991,
and Perrut 2000). In contrast, Wilson (1998) takes a phenomenological approach
to constructing reaction-dispersal models which display some of the same types
of behavior as individual based simulations. A very clear discussion of these two
contrasting approaches is given by Wilson (1998). It would be of interest to put
some rigor and mechanism behind Wilson’s phenomenological models, perhaps by
extending the mathematical and mechanistic approach of Durrett and Levin, but
that appears to be beyond the reach of existing ideas and methods. The present
paper is a modest step in that direction but much more remains to be done.
Variability in abiotic environmental factors and variations in the dispersal rates
of organisms and the ways that they utilize space can have important effects on
population dynamics in many ways on many scales; see for example (Cantrell and
Cosner 1989, 1991, 1998, Tilman and Kareiva 1997, Cuddington and Yodzis 2000,
Dockery et al. 1998) among many others. The mechanisms we shall study here,
like those studied in (Chesson 2000) do not depend on abiotic variability or any
particular assumptions about dispersal rates, although they may interact with those
factors. Instead, they depend on the presence of variation in the number of individ-
uals, and hence in vital rates if those are density-dependent, across a set of discrete
sites. It turns out that rescaling a discrete model to a continuum model by averag-
ing local populations and rates can modify the form of density dependence in some
cases. In the context of interacting particle systems, averaging via hydrodynamic
limits determines the diffusion rate independently from the reaction terms. In other
words, assumptions about fast or slow diffusion in the original interacting particle
system do not influence the form of the reaction terms in the rescaled model but do
appear in the diffusion rate of that model. Thus, effects of slow diffusion such as
those discussed by Cuddington and Yodzis (2000) cannot be understood by study-
ing how the averaging process affects reaction terms, but if a slow rate of diffusion
is imposed as an extra condition on the underlying interacting particle system then
that feature is retained in the rescaled model. Thus, it may be possible to gain some
insight into the effects of slow dispersal rates by using reaction-diffusion systems
derived as limits of interacting particle sytems, but that would be a problem in
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reaction-diffusion theory rather than a problem directly related to rescaling vital
rates via Poisson averaging. Some discussion of the effects of slow diffusion from
the viewpoint of reaction-diffusion theory are given in (Cantrell and Cosner 1989,
1998) and (Dockery et al. 1998).

The present paper was inspired largely by a paper of Durrett and Levin (1994).
In that paper Durrett and Levin compare and contrast the predictions of various
types of spatial models. They observe that simple mean field models, or models
obtained by simply adding a diffusion term to those mean field models, may give
quite different predictions than computational simulations of interacting particle
systems. They also propose that using hydrodynamic limits to rescale interacting
particle systems into reaction-diffusion systems should lead to models which more
accurately reflect the observed behavior of the original system, and they work out
an example which supports that view. In the present paper we adopt the viewpoint
and methods of (Durrett and Levin 1994), develop some mathematical machinery
to facilitate the application of those methods, and apply them to a number of stan-
dard models for population dynamics and species interactions. The mathematical
methods we develop provide information about the averages of Poisson distributed
random variables that may be useful in other modeling contexts, for example in the
approach used by Chesson (2000). We found it useful to think of the process by
which reaction terms are computed from local interaction rates as a transform, in
the sense of Laplace or Fourier transforms. We refer to the transform as the Dur-
rett-Levin transform because it is based on the computations in (Durrett and Levin
1994). We derive a number of properties and operational formulas for the transform
and use those to study the effects of rescaling in specific models. It turns out that
in many cases the transforms of relatively simple functions cannot be computed
explicitly in closed form, but it is usually possible to obtain enough information
about them to draw some conclusions about the predictions of rescaled models.

One significant feature of averaging functions of Poisson random variables is
that it smooths out interaction rates; that is, applying the Durrett-Levin transform
to bounded functions yields functions that are infinitely differentiable. This is sig-
nificant in the context of the Hawk-Dove game studied in (Durrett and Levin 1994)
and also in the context of ratio-dependent predator-prey models (see (Cosner et al.
1999) and the references therein; also (Kuang and Beretta 1998, Jost et al. 1999)).
It may be significant in other types of models such as epidemic models with pro-
portional mixing. Those types of models involve interaction rates which are not
differentiable at the origin, and those in turn admit dynamics which do not occur in
similar models with smooth interaction terms. Hence, scaling via Poisson averaging
can have profound effects on the predictions of such models, as noted in (Durrett
and Levin 1994), and that is due largely to the smoothing property of the averaging
procedure.

The paper is organized as follows: in section 2 we review background mate-
rial, mostly from (Durrett and Levin 1994); in section 3 we define the Durrett-Levin
transform and deduce some of its properties; in section 4 we apply the results of sec-
tion 3 to a number of common models, and in section 5 we give a nonmathematical
discussion of the implications of the calculations in section 4. Some mathematical
details are treated in the Appendix.
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2. Models and scaling: a brief review
The micro scale: interacting particle systems

The models that originally motivated us to study Poisson averaging are interacting
particle systems of the type discussed by Durrett and Levin (1994). We shall use
some of the notation from (Durrett and Levin 1994), and since the treatment in
that paper is fairly comprehensive we shall only give a brief discussion of how the
models are formulated. Our main goal here is to describe how to set up models
that capture the local interactions of individuals. A key feature of these models is
that they describe “density dependent ” vital rates in terms of interactions between
individuals, as opposed to casting them in terms of average densities. The under-
lying spatial framework for the interacting particle systems we consider is Z?, the
lattice of points in the plane with integer coordinates. For purposes of illustra-
tion we consider the case of two species, but the approach extends to arbitrarily
many. Let ny,(x) and 7y, (x) denote the numbers of individuals of types 1 and 2
respectively at location x and time ¢. We will assume that individuals disperse by
moving at random to an adjacent grid point, but we want to allow more flexibility
in our description of the local neighborhood where interactions can take place. For
example, we may want to think of the “location” of an individual as the location
of its nest, and think of the local neighborhood as the area over which the indi-
vidual can search for prey. We can describe the neighborhood of a point x as the
set {x +z : z € N} where N is a local neighborhood of (0, 0). Typical choices
would be N = {z € Z? : |z1]| + |z2] < 1}, which consists of (0, 0) and its nearest
neighbors, or perhaps NV = {(0, 0)} so that the neighborhood is simply the site
itself, or the neighborhood could be the larger diamond shape or square given by
N ={zeZ?:|z1|+|z2l <m}orN = {z € Z? : |z1] <m, |z2] < m)}. We shall
see that the only feature of A which is still relevant after the models have been
rescaled to the “macro” scale is the number of sites (i.e. grid points) in A/, which
we denote as || In systems with more than two species there could be different
local interaction neighborhoods for interactions between different pairs of species.

An important feature of the types of neighborhoods we consider is that they
are defined in terms of the distance between grid points in some metric or dis-
tance function. If we let dj(x, y) = |x; — y1| -+ |x2 — y2]| then the neighbor-
hood N' = {z € Z? : |z21]| + |z2] < m} could be defined as N = {z € Z? :
di(z,0) < m} which means that the neighborhood of x could be characterized as
{y :di(x, y) <m}. We could also use da(x, y) = max{jx; —x2|, |y1 — 2]}, and
obtain N = {z € Z% : |z1| < m, |z2| < m) = {z € Z? : d2(z,0) < m}. A key
feature of neighborhoods defined in terms of distances is that distance is symmetric,
that is, d(x, y) = d(y, x). It follows that for any given grid point x the number of
grid points y for which d(x, y) < m is the same as the number of grid points for
which d(y, x) < m. In words, the number of grid points in the local neighborhood
of x is equal to the number of grid points y to whose local neighborhoods x belongs.
This is relevant in the formulation of predator-prey models because it means that
the number of grid points within the search radius of a predator located at any given
point is equal to the number of grid points from which a prey individual at point y
is potentially subject to attack.
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Following Durrett and Levin (1994) we specify the dynamics of the interacting
particle system in terms of dispersal, local interactions, and neighborhood interac-
tions:

1. Dispersal: Each individual of type i changes its location at rate u;. An indi-
vidual changes its location by randomly selecting one of the nearest neighbors
to its current position and moving to it, with each nearest neighbor site having
equal probability of being selected.

2. Local interactions: Individuals of each type may reproduce and/or die at rates
that depend on the number of individuals of either or both types present at the
same site, These interactions would typically include crowding effects due to
the presence of conspecifics.

3. Neighborhood interactions: Individuals may reproduce and/or die at rates
depending on the numbers of individuals of either or both types present in the
local neighborhood of the site. These interactions would typically include inter-
ference competition between different species or predator-prey interactions.

For purposes of describing local neighborhood interactions we will find it useful
to define

i (x) = Znu(x +2z) .1
zeN

as the number of individuals of type { in the neighborhood of x . In formulating inter-
action terms we shall assume that individuals do not crowd themselves or interact
with themselves. This is one of the formulations given by Durrett and Levin (1994,
p. 389). We have chosen to make that assumption because it seems more realistic
and seems to lead to simpler scaling relations in some cases than other possible
assumptions.

With the assumptions and notations described above, we can readily formu-
late models for population interactions at the “micro” scale. In a later section we
shall examine a number of scenarios in detail, but for the present we shall only
give a simple example and describe the general form that the interaction terms will
take, Suppose that individuals of type 1 reproduce logistically with a per capita
birth rate which decreases linearly with the number of other conspecifics at the
same site (local interaction) and experience Lotka-Volterra predation from those
individuals of type 2 in the neighborhood of the site {neighborhood interaction.)
Since we assume individuals do not interact with themselves the logistic birth rate
for type 1 at location x should have the form a — b(n1,(x) — 1) and the effect of
predation should be to induce a death rate —cfjy; (x). (Recall that fjp, (x) represents
the number of individuals of type 2 in the interaction neighborhood of x.) If we
interpreted these rates as terms in a nonspatial model for population dynamics, the
model would take the form

d
“Zi-t—mz(x) = [a — b (x) — 1) — cfja ()11, (x)” (2.2)

However, this formulation makes sense only by analogy because ) and fj; are actu-
ally discrete random variables; hence the quotation marks. The reason why we have
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presented equation (2.2) is to show how the rates occurring in the interacting parti-
cle system are related to the terms in a nonspatial deterministic model for local and
neighborhood interactions. Since many types of interactions (e.g. predation with a
functional response) are typically modeled as terms in ordinary differential equa-
tions for population densities, it seems worthwhile to illustrate the analogy between
such terms and the rates in the interacting particle system. To get a logically sound
formulation of the expected rate of change in the total population of type 1 at the
point x we would calculate the expectation E ([a —b(n1,(x) — 1) — o () 101, (x)).
The main goal of this paper is to gain a better understanding of how such expec-
tations behave if the interacting particle system is rescaled to a diffusion limit.
The general form of interaction terms is f (11, (x), n2:(x), 71 (x}, 772, (x)), so the
general forms of expectations we will want to compute will be the limiting cases
of

E(f(mi(x), nae(x), 71, (x), fiar (X)) (X)), (2.3)

We next turn to the issue of how to compute the large scale limits of interacting
particle systems or other sorts of explicitly or implicitly spatial models.

The macro scale: spatial averaging and hydrodynamic limits

If a population is distributed over a collection of sites, with different numbers of
individuals occupying different sites, and if additionally the rates at which indi-
viduals die or reproduce depend on the number of other individuals occupying the
same site, then to obtain a population level model we must somehow average those
rates across all sites. Unfortunately, if (x) is arandom variable, f(#) is a nonlinear
function, and E denotes expectation, then in general E(f (1)) # f(E()). Thus,
to correctly rescale individual based spatial models, interacting particle systems,
etc. up to simple population level models we must take into account the way that
the distribution of » interacts with the nonlinearity of f. A general approach to
that issue is described by Chesson (2000), but the specific results depend in part
on assumptions about the distribution of 7. In this paper we will examine in detail
the case where 1 has a Poisson distribution. That choice is motivated partly by the
theory of hydrodynamic limits of interacting particle systems. That theory provides
amathematically rigorous way of rescaling interacting particle systems to reaction-
diffusion systems. Rigorous treatments are given by DeMasi and Presutti (1991)
and Spohn (1991). A rigorous derivation of some of the results stated by Durrett
and Levin (1994) is given by Perrut (2000).

There are two key ideas underlying the formulation of hydrodynamic limits.
First, if particles perform independent random walks on a grid then under appro-
priate assumptions on the initial state of the system, the large time limit of the joint
distribution of the numbers of particles at the points belonging to any finite subset
of the grid is a set of independent Poisson distributed random variables, each with
the same mean. Second, in the models we envision, dispersal occurs on a faster
timescale than population dynamics. As is standard in taking diffusion limits we
scale the grid as € and time as €2 and let € — 0. This leads to a standard diffusion
equation for dispersal. In this framework as we pass to the “macro” scale of time
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and space by letting ¢ — 0, the variables 1;,(x) giving the numbers of individuals
at site x should have limits that are independent and Poisson distributed on the
set of sites in the interaction neighborhood of any given site. The means of the
variables should be the population densities of the two types at the site in ques-
tion. If the rate at which individuals of type i reproduce or die at site x is given
by fi(n1, (x), 12 (%), A1: (x), 72, (x)) then the reaction term in the limiting equation
should be given by taking a limit of (2.3) as

E(f Uy, Uz, Uy, U Up), (2.4)

where U;, U; are independent Poisson distributed random variables with means
u; (x), IV |u; (x) respectively.

Formula (2.4) is the starting point for our investigations. Recall that if U is a
Poisson distributed random variable with mean A then U takes values 0, 1,2, ...
with P(U = k) = e_)‘kk/k!. Thus, for any function g(Uy, Ua, 17;, (}2) we have

E(g(Uy, Uz, Uy, Ua))

o0

= > g,k &mP(U1, U, U1, Un) = (j,k, £, m))
ok, &,m=0
OO .
- Z g(j,k, £, m) (e ul /i (e b/ k)
Jk,&m=0

s (eI (I up) e (e W2 (N Jug)™ /)
= [e-WHDI—(NHDuz)

(o]
% Z g(j, k£, /n)INIH'”u{Hu’;L’" Jilk!1gim!, (2.5)
Jok &.m=0

Equation (2.5) shows how the term g(U;, Uz, U 1, (72) arising from local and neigh-
borhood interactions at the “micro” scale should be scaled up to the “macro” scale.
The expression on the right in (2.5) shows how to compute the reaction term in
the reaction-diffusion system arising as the “macro” scale limit of the original
interacting particle system.

In analyzing expressions such as those occurring in (2.5) it can be useful to
exploit the independence of the random variables. Suppose that g = g(U;, Us) for
simplicity. We have

E(g(Uy,U2)) = Y Y g(j, ) P((U1, Uz) = (j, k)

J=0k=0

=> [Zg(j, k)P (Uz = k)] P = ). (2.6)

j=0 Lk=0

The point is that we can compute the rescaled form of g(U;, Uz) one variable at a
time.
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3. The Durrett-Levin transform
Definition and basic properties

A crucial element in our approach to understanding the effects of Poisson averaging
is to interpret the calculation of the expectation of a function f(U) of a Poisson
random variable U with mean u as a transform which yields a new function of u
in analogy with the way that the Laplace and Fourier transforms act on functions
to produce new ones. Once Poisson averaging is conceptualized as a transform we
can attempt to understand it by deriving operational formulas analogous to those
possessed by Laplace or Fourier transforms and using those to study its effects
on various sorts of functions. Since we were inspired to study the topic of Pois-
son averaging by Durrett and Levin (1994) we have used the term “Durrett-Levin
transform” to denote the transform arising from Poisson averaging.

Definition. The Durrett-Levin transform of a function f(Uy, Us, ..., Uy,) whose
domain is the set of n-tuples of nonnegative integers is defined as

DL{fYur, . vun) = Y fUeeee s n)

Jivees jn=0

x e~ Q) Il Gy Gal) - ()
(3.1a)

or equivalently as the Poisson average

DL{fYur, ... yun) = E(f (UL, ..., Us))
where Uy, ... , U, are independent Poisson random (3.1b)
variables with means E(U;) = u;.

Using definition (3.1b) we may rewrite (2.6) as
E(g(Uy, Uy, Uy, Un)) = DL{g} (w1, ua, N uy, N |uz) (3.2)

where u; = E(U;), so that |[N|u; = E (ﬁi), Our goals are to understand how Pois-
son averaging changes the form of terms describing interactions and hence might
change the predictions of models as in (Durrett and Levin 1994), and to derive prop-
erties and operational formulas for the Durrett-Levin transform which can inform
our understanding of the effects of scaling or aid in computation and/or analysis of
the transforms of specific functions. To that end we shall state some lemmas about
the transform.

Lemma 3.1, Suppose that | f(jy, ..., jn)l < Mo - Ml(j’+'“+j“) for some positive
constants Mo, My. Then DL{f}(uy, ... , u,) is well defined and is a real analytic
Sfunction of (uy, ..., uy) on R", so that in particular DL{f}(u1, ..., uy) is C*

iy, ..., Up).
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Proof. Theboundon f implies that the series defining DL{ f} in (3.1a) is majorized
by the series

o0
Y MolMur U My P e 1 GG - G
jlvmvjn:O

which converges to Mg(e!Mit1l=uy ... (glMitul=tiny 5o the power series for DL{f}
converges for all (uy,...,u,) € R"?, with uniform convergence on any compact
subset of R". ]

A number of features of the Durrett-Levin transform are apparent from inspec-
tion of (3.1). We have

Lemma 3.2, The Durrett-Levin transform is linear. If f is nonnegative then DL { f}
(uy, ..., u,) isnonnegative ifu; =0, i ==1...n Ifinaddition f(j1,..., Ja) >
0 for some (ji,..., jn) then DL{f}(u1, ..., u,) is strictly positive if u; > 0,
i=1...n

Various properties of the Durrett-Levin transform follow from (3.1b) and stan-
dard results about independent random variables. Some of those are given in the
following:

Lemma3.3. i) DL{1}=1.
ii) DL{U;} = u;.
i) If fWUy, ..., Uy) = f(Uy,...,Uy) for some combination of indices
{i,..., iy C{1,...,n) then DL{f Y1, ... ,un) = DL{f iy, .. 5 ttip).
w)If {iv, ..., ik} and {ji, ..., je} are disjoint subsets of {1,...,n} and
FWL . U) =gWy, .. U dRUjy, ..., Uy, then
DL{fYr, .. up) =DL{gW iy, ... i) DL{AY ey, .0t gy

A sketch of the proof is given in the Appendix.

Explicit Computations

Ideally we would like to obtain explicit formulas for the reaction terms arising from
rescaling. This approach is taken for the Hawk-Dove game in (Durrett and Levin
1994). Unfortunately, it turns out that such explicit computations can be difficult
even for simple types of functions, so that a uniform approach based on explicit
computation does not seem feasible. By definition (3.1a), the Durrett-Levin trans-
form can always be evaluated numerically as a power series, but it is illuminating
to consider some specific cases where it can be computed in a simple closed form.
We shall focus primarily on simple expressions in one or two variables.

Example 1. Let n = 1.
i) If k is a positive integer,
DLUW — U =2)--- (U —k+ 1)} = uf

i) DL{e?V} = ("~ D
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0 u=0
[u —1 +e‘“”] Juu#0
0 u=0
(? —2u+2—2e7")/u® u #£0.

(See the Appendix for derivations).

i) DL{U/(U + 1)} = {

) DL{U/U +2)} = {

Example 1 reveals some important features and limitations of the Durrett-Levin
transform. Cases i) and ii) show that it maps polynomials of degree m to other poly-
nomials of degree m and maps exponentials to exponentials, but it typically changes
the coefficients in both cases. Cases iii) and iv) are more subtle. In those cases the
algebraic forms of the functions are changed. However, it turns out that many of
their qualitative features are preserved.

For example, in the case f(U) = U/(U + 1) we have

Jim f(U) = lim DL{f}u) =1;

[1— (1 +ueT/u? (u+0)
[DL{f}w)) =
1/2 (u = 0)

so [DL{f}(u)] > Osince (1 +u) < &' for u % 0. It turns out that in general the
Durrett-Levin transform preserves monotonicity and some aspects of asymptotic
behavior. However, cases iii) and iv) of Example 1 show that it generally does not
preserve the algebraic form of functions. An examination of the derivation of iii)
and iv) shows that the same method would apply to U/(U + k) if k is a positive
integer but not otherwise. We do not know how to compute DL{U/(U + k)} in
closed form for general k. In the case where k is a positive integer the algebraic
form of DL{U/(U + k)} becomes more complicated as k increases. Similarly, it is
unclear how to compute DL{UY} if y is not an integer.

Example 2. (see also Durrett and Levin 1994). Let n = 2 and let f(U;, Uz) =
DU /Uy + U, = D) if U, Uz = 1, f(0,Uz) = f(U3,0) = 0. We have
iy

(1 . e“(”l'*‘”Z)),
Uy - o

DL{f} =

A derivation is given in the Appendix. The function f (U, Uz) in this example arises
in the analysis of the Hawk-Dove game if one assumes that individuals do not “play
the game” against themselves; see (Durrett and Levin 1994). The derivation fails if
we consider functions such as Uy Uy /(U +2Up — 1) or U U /(Uy + Uz + k) when
k is not an integer. Rates depending on U Uy /(U + Uz) or Ui U /(U + Uz — 1)
occur naturally when individuals encounter each other with frequencies depend-
ing on the fraction of the local interacting population of each type. (The presence
or absence of the —1 in the denominator depends on whether individuals interact
with themselves.) Thus, it is good to be able to compute their Durrett-Levin trans-
forms in closed form. However, forms like U1 U /(AU + BU, + C) with general
coefficients A, B, and C also occur naturally in ratio-dependent and Beddington-
DeAngelis forms of functional response terms, and in general those do not have
Durrett-Levin transforms which can be expressed in closed form.
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Conclusions. We can compute the Durrett-Levin transforms of certain functions,
notably polynomials and exponentials, explicitly in closed form, However, for many
other expressions which occur frequently as descriptions of interaction rates, ex-
plicit computations are difficult or impossible. Thus, we shall try to obtain enough
information about the properties of the Durrett-Levin transform so that we can
draw conclusions about the behavior of models involving them without having to
compute them in closed form.

Operational formulas and additional properties

We shall derive some results which allow us to obtain fairly detailed information
about the Durrett-Levin transforms of functions even if we cannot compute them
explicitly. Some of the formulas may also be useful for explicit computations.

Lemma 3.4, Suppose that fi(Uy, ..., U,) = fa(Uy, ..., Uy). Then DL{f1} =
DL{ f2}.

Proof. This follows immediately from (3.1a) by comparing series term by term.

Remark. If f(Ui,...,U,) = fa(Uy,...,Uy) forall (U, ..., U,) with strict
inequality for some (Uy, ..., Uy,) then DL{f1} > DL{f3} for (uy1,... ,uy) #
©,...,0).

Lemma3.5. If f = f(Uj, ..., Uy,) then

0
mDL{f(UI,-.. Uk Uy =DL{f(UL, ..., Ug +1,..., Un))

—DL{f(U),... Ug, ..., Up)}
=DL{fWU;,... , U +1,...,Up)

~fWU, ..., U, U (3.3)

Lemma 3.5 has a number of important implications. Some will only become
apparent when we examine how scaling affects population dynamics, but others
are immediate:

Corollary 3.6. If f is increasing (resp. decreasing) in Uy then DL{ f} is increasing
(resp. decreasing) in uy.

Proof. If f is increasing in U then DL{f(Uy,... U + 1,..., U} =

DL{f(Uy,..., Uk, ..., Uy} with strict inequality if (uy, ..., us) % (0,...,0).
d

By (3.3), a———DL{f} > 0 with strict inequality for (uy, ... ,un) # 0,...,0).If
g

f is decreasing in Uy then the inequalities are reversed.

Remark. If f is concave up with respect to Uy, in the sense that

JW, oo U+ L U+ fUL U =100, Uy
2
> fWUn... Uk ooy Un) (3.4)




Deriving reaction~diffusion models in ecology from interacting particle systems 199

then applying (3.3) twice and arguing as in Corollary 3.6 shows that
BZDL{f}/au% > 0 so that DL{f} is concave upward. In general f need not
be differentiable, or even defined for (Uy,...,U,) ¢ N, but if Bzf/aU,f >0
then (3.4) holds. Thus, the Durrett-Levin transform preserves the monotonicity and
convexity properties of f if those properties are global. Some additional properties
follow from the lemmas below. (Proofs or sketches are given in the Appendix.)

Lemma 3.7. Suppose that | f(Uy, ..., U)| < fo- Ifur = 0fork =1,...n, then
IDL{f} < fo.
Lemma 3.8. If lim f(U) = « then lim DL{f}u) = a.

U-—00 U=->00
Lemma 3.9. DL{U f(Uy, ..., Up,..., U} = wDL{fWUy, ..., Ux + 1,
coa Unk

Remark. To understand how Poisson averaging affects the predictions of some
types of models it is of interest to know whether it decreases or increases the
original function. In general it may increase the value of the original function
on some intervals and decrease it on others. However, if f(U) is concave then
fU) < a+blU whenevera+bU isatangentlineto f(U),so DL{ fH{u) < a+bu.
Since f(U) < a -+ bU for the tangent line at U = ¢ given by f(c) + f'(c)(U —¢)
it follows that DL{f}(u) < f(c) + f'(c)(u — ¢) so that DL{ f}{c) < f(c). Thus,
Poisson averaging decreases concave functions. Similarly, it increases convex func-
tions. See also (Chesson 2000) for a related discussion of concavity and convexity
vs. spatial averaging.

The examples and lemmas in this section show that the Durrett-Levin transform
preserves a number of important qualitative features of functions, including mono-
tonicity. However, it does not always preserve the algebraic form of the original
function, and for many common functions it is not clear how to compute the trans-
form, or even that the transform can be expressed in closed form. The transform is
a smoothing operator which maps bounded functions to analytic functions. It turns
out that in models with nonsmooth rate terms such as the hawk-dove game, epi-
demiological models with proportional mixing, or ratio-dependent predator-prey
models, the smoothing property of the transport can have profound effects on model
predictions.

We end this section with another lemma which will be used in one of the appli-
cations. It is based on the computations used in Example 2. The proof is in the
Appendix.

Lemma 3.10. DL{ f (U; + Ug)}(uy, u) = DL{f(U)}(uy + ua).

(As long as f satisfies the bounds in the hypothesis of Lemma 3.1 all the series in
the proof will converge uniformly on compact subsets of R2)

4. Applications and implications

In this section we apply the results of the preceding section to some specific situa-
tions. Our goals are to illustrate the effects of Poisson averaging and to explore how
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it can be used in the specific context of hydrodynamic limits of interacting particle
systems to obtain simple models that retain certain features of the spatial structure
of the original model. Our treatment is not intended to be exhaustive, and we hope
that other researchers will explore these topics further. The issve of determining
what Poisson averaging does or does not do can be addressed directly by applying
the results of section 3, and is relevant in modeling approaches such as those of
Chesson (2000) which are not based on interacting particle systems. To correctly
understand how to translate the modeling assumptions underlying an interacting
particle system into interaction terms in a simple continuum model requires an
examination of those assumptions as well as an application of the results of section
3. Thus, we shall first consider general issues related to Poisson averaging and
then turn to the more specific issue of translating interacting particle systems into
reaction-diffusion models, even though our main interest is modeling via reaction-
diffusion systems.

Effects of Poisson averaging in simple models

The simplest sorts of models for which our methods are relevant are based on the
idea that individuals at a given site x die or reproduce at rates that depend on the
numbers n;,(x) of individuals of type i in the same site. If we assume that indi-
viduals of type i interact only with others of type i, and that individuals do not
crowd themselves but do experience logistic crowding effects from other conspe-
cifics in the same location, the logistic birth rate at location x should be given by
fa — b(n; (x) — 1)], so to compute the reaction term for the corresponding hydro-
dynamic limit we would calculate DL{[a — b(U; — 1)]1U;}. By the calculations of
Example 1, Section 3,

DL{[a — b(U; — DIU;} = au; — bu?. (4.1)
Thus, the hydrodynamic limit model is given by

Qu:
i d; Au; + (a — buy)uy,
at

where A denotes the Laplacian 82/ 8x12+82 / ax%.This is simply the standard logistic
equation with diffusion. In this case the hydrodynamic limit has been derived with
complete mathematical rigor; see (DeMasi and Presutti 1991). Poisson averaging
has essentially no effect on this model. Suppose now that the species present at
each site interact with each other according to the principle of mass action; that is,
their interactions are described by a Lotka-Volterra model. If species i has a linear
birth or death rate, logistic interactions with other conspecifics, and Lotka-Volterra
interactions with other species, then the local population growth rate at a given site

18
n

fr=an —bni(ni = 1)+ Y_cijminj.

J=1
J#i
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Computing the Durrett-Levin transform (using part iv) of Lemma 3.3) yields

n n

DL alU; —bU(U; — 1) + ZcijU,'Uj = qau; — bu? -+ Zc;ju,-uj,
j=1 j=1
j#i i

Thus, Poisson averaging per se has no effect at all on Lotka-Volterra systems. Evi-
dently a greater amount of nonlinearity must be present in the model if we are to
see any effects from Poisson averaging.

Effects of Poisson averaging on nonlinear competition

To see how Poisson averaging might affect nonlinear interaction rates it is useful
to recall how Poisson averaging affects various sorts of nonlinear functions. By the
results of section 3, if f(U) is globally monotone or concave or convex, then so is
DL{f}(u). However, Poisson averaging decreases concave functions and increases
convex functions. If f is smooth then

]
E[DL{f(U)}(u)]lmuo =DL{f (U + 1) — F(U)Hu=uo- (4.2)

If ug = O then the right side of (4.2) is simply f (1) — £ (0). In the case where f
is strictly concave and smooth we have f(U + 1) — f(U) < f/(U) so in particular

0
57 IPLAF W @)]l=0 < DL{f (U)}u=0 = f'(0). (4.3)

Thus, for concave functions the Durrett-Levin transform decreases the deriv-
ative of f at low densities. Similarly, it increases the derivative of f atu = 0
if f is convex. In many cases the predictions of models with respect to coexis-
tence or extinction depend on whether species can increase their density from an
initial low density, i.e. on invasibility. The behavior of a model when one of the
species is introduced at a low density while the others are at equilibrium is often
determined by the linearization of the model at the equilibrium, but the lineariza-
tion depends on derivatives of the functions describing interaction rates evaluated
when one of the densities is zero. Thus, rescaling via Poisson averaging can have
quantitative effects which should sometimes affect predictions of invasibility and
hence of persistence, coexistence, competitive exclusion, etc. A connection between
invasibility and coexistence can be made via the mathematical theory of perma-
nence for dynamical systems; see for example (Hutson and Schmitt 1992). In some
cases monotone methods can be used to obtain results on competitive exclusion
by combining information about invasibility with conditions that rule out coexis-
tence equilibria; this is done in (Cantrell et al. 1993), for example. Because of the
connection between 3{DL{ f}(u)]/0u},=o0 and f'(0) given by (4.3) it is easier to
understand the effects of Poisson averaging on invasibility and hence persistence or
extinction than it is to understand possible effects on dynamics at higher densities.
We will return to issues of global dynamics, pattern formation, etc. later but first
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we will explore some examples that illustrate how Poisson averaging can affect
persistence in nonlinear models.

Suppose that two species compete in such a way that their per capita growth
rates at a given site are given by f;(n1 -+ 12). If we simply use those growth rates
applied to mean densities we obtain the model

d .

-[-l”z—‘ = fiu +udui, i=1,2. (4.4)
On the other hand, if we use Lemmas 3.9 and 3.10 to compute DL{ f; (U1 + Uz)U;}
we obtain

DL{fi(Uy + U)UiY(u1, u2) = DL{f; (1 + Uy + U2)}(uy, u2du;
= DL{f; (1 + W)} W) lweu;+uathi-

Thus, if we let Fi(w) = DL{f; (1 + W)}(w) then the system analogous to (4.4)
after Poisson averaging is

éﬁ = F;Qu) +uu;, i=1,2. 4.5)

dt
Generically, models such as (4.4) and (4.5) in which competition depends on a
single factor (in this case u; + u) predict that one competitor excludes the other.
Unless fi(w) and f>(w) happen to be zero for the same value of w, the system
(4.4) cannot have an equilibrium, The situation in (4.5) is analogous. It then follows
from the monotone property of two-species competition models that if the first com-
petitor can invade the system when the second is at its single-species equilibrium
then first competitor will exclude the second. Arguments of this type are given in
(Cantrell et al. 1993) in the context of Lotka-Volterra systems with diffusion, but
the same considerations apply to general models for two competitors in continuous
time.) Thus, because the model (4.5) still involves only one competitive factor,
Poisson averaging will generally not lead to coexistence in models such as (4.4).
However, Poisson averaging can have quantitative effects on nonlinear functions,
so in some situations Poisson averaging might lead to a reversal of the model’s
predictions relative to competitive dominance. The case considered here, where the
competitive factor is simply u; + i, is special in that we can use Lemma 3.10 to
analyze the effects of Poisson averaging. In general it is not clear what the effects
would be if the competitive factor were 1 + cuy with ¢ % 1 or had some more
complicated form, although the possible quantitative effects of Poisson averaging
should still be able to reverse competitive dominance in some situations.

Smooth consumer-resource models

A common approach to resource competition is to construct consumer-resource
models and then either treat them directly or scale out the resource in some way
to obtain a competition model. Part of our purpose in this paper is to see how the
specific method of scaling that arises from Poisson averaging affects models, so
we will examine some consumer-resource models directly, with scaling only via
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Poisson averaging. Consumer-resource models typically involve a nonlinear rate of
resource consumption called the functional response. There are a number of forms
which are used to at least some extent in ecological models. If U; represents the
consumer and U; the resource, some standard smooth forms are

g(Uz) = aly /(1 + bUs) (Holling II)
g(Uz) = aU2/(1 + bU2) (Holling IIT)

g(Uy, Ug) = aly /(1 + bUs + cU;) (Beddington — DeAngelis).

(There are other forms of functional response that are not smooth, including the
ratio-dependent form which has engendered some controversy, but we will consider
those separately.) A typical model for a single consumer (species 1) and a single
resource (species 2) would postulate a consumer birth or death rate at any particular
site given by [eg(n1, n2) — d1n7; and a birth or death rate for the resource given by
ana —bna(na — 1) —g(n, n2)n, where ; is the population of the ith species at the
given site. (In the absence of the consumer the resource is assumed to grow logis-
tically, but individuals are assumed not to crowd themselves.) A population level
model simply using the rates from the model for individual interactions directly
would take the form

du

bl , —d

T (eg(uy, ug) — duy

d

% = qily — bu% — g(uy, ug)uy.

(The contribution to overall density by a single individual is typically negligible
at densities high enough for deterministic models to be reasonable, so normally
for a population P inhabiting an area A we would replace (P/A)(P — 1)/A with
P?/A? = y? rather than (P?/A%) — (1/A)(P/A) = u(u — 1).) As noted previ-
ously, if g(U1, Ua) = goUz (the Lotka-Volterra case) then Poisson averaging has
no effect at all on the model. If g(U;, Uz) = h(Ua) and A(U) is monotonically
increasing and concave, with #(U) — o as U — oo, then those properties are
inherited by DL{A} (1), but DL{h}(z) < h(z) for all z. Thus, if A(U) is a Holling
II functional response the averaged system

d

T eDLRYug) — duy

dt

d

_(.;%2 = Uy — bu% — DL{h}(uz)u;

will have a functional response with the same general properties as & but with a
different algebraic form and a quantitatively smaller value at any given density us.
Thus, Poisson averaging does not change the qualitative structure of the model but
could have quantitative effects on the model which would result in the same sorts of
changes in predictions that might be induced by changing parameters in the original
model, In particular, since Poisson averaging decreases /1 in the Holling II case,
it could in principle shift the model’s prediction from coexistence to extinction of
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the consumer. In the case of a Holling type III functional response the effects of
Poisson averaging may be stronger. Specifically, if £(U) = aU?/(1 + bU?) then
DL {h}(u) will still be increasing in i and will have the same asymptotic limit as /1
when 1 — o0, but by formulas (4.2) and (4.3), dDL{h}(u)/dulu=0 > 0 = K'(0),
and in some cases Poisson averaging may eliminate the sigmoid shape of the graph
of h(U). Thus, although the qualitative effects of Poisson averaging on models with
aHolling I functional response are still relatively modest, they are strong enough to
influence predictions that depend on the sigmoid shape of the functional response or
on having #'(0) = 0. The effect of Poisson averaging on the Beddington-DeAngelis
functional response is similar to its effect on the Holling II form. Again, concavity
and monotonicity (in both variables for the terms U; Uy /(14-cU; +-bU3) appearing
in the model) will be preserved, but the algebraic form will change and we will have
DL{g(U,, U)U ¥ uy, up) < g(uy, uz) because of the concavity of g(U;, U2)U1.

One approach to understanding resource competition is via consumer-resource
models with more than one consumer, If species 1 and 2 are consumers and species
3 is a resource, a typical model for resource competition obtained by substituting
u1, iz, and i3 into the local rates of interaction between discrete individuals would
take the form

d
-d?;-‘t—l = [elgl (Ll], Ll3) - dl]ul
U
__6.1.2.2. = [eaga(ua, us) — dajuz
d
_:_13 = quz — bu% — g1(uy, uz)uy — galug, uz)us. (4.6)

(Again, we have replaced the logistic term U (U — 1) with u? in going to the mac-
roscale model). In the case where g; and gz depend on U; and U, respectively,
for example in the Beddington-DeAngelis case, the two consumers may coexist
because of the effects of intraspecific feeding interference. In cases where g and
g2 depend only on u3, coexistence in the sense of permanence is generally ruled out
because permanence implies the existence of a positive equilibrium. In (4.6) the u3
component of an equilibrium must satisfy both e g1 (13) = d1 and ez82(u3) = da,
which generically is not possible. Coexistence based on the Armstrong-McGehee
mechanism of temporal periodicity (Armstrong and McGehee 1976, 1980, Abrams
and Holt 2002) is possible in models such as (4.6). Applying Poisson averaging in
the context of (4.6) with g = g{(U3), g2 = g2(U3) yields

du

_(.i.t'_ = [eyDL{gi}(u3) — dilu;

du

_d;% = [e2DL{g2}(u3) — daluz

du

dLIZB = aus — bng — DL{g1}(u3)u; — DL{ga}(u3)uz. .7

Structurally (4.7) has the same features as (4.6), so again permanence is generically
ruled out, but coexistence based on the Armstrong-McGehee mechanism is still pos-
sible in some cases. Thus, Poisson averaging does not induce stronger forms of per-
sistence than those found in the original model, although it may have quantitative



Deriving reaction-diffusion models in ecology from interacting particle systems 205

effects that switch competitive dominance or influence the Armstrong-McGehee
mechanism in the same sorts of ways as the parameters in the original model. If
the Beddington-DeAngelis functional response is used in (4.6) then permanence
is possible because of the intraspecific feeding interference that is built into that
functional response (Cantrell et al. preprint). Poisson averaging of terms of the form
U;Uj/(1 4 bU; +cUj) yields terms which are still monotone and concave in each
variable, and since DL{f (Ui, Uj)U;}ui, u;) = DL{fU; + 1, Uj)Hui, ujui,
we also see that DL{U;U; /(1 + bU; + cUj)}(u;, uj) has the form g(u;, uj)u;u;
where g is decreasing in u; and u; and has limit zero as u; — oo oruj — ©o.
Thus, the key qualitative features of the Beddington-DeAngelis functional response
are preserved by Poisson averaging, although it may induce quantitative changes.
Hence, the range of phenomena supported by the Beddington-DeAngelis response
is not changed, although the quantitative changes created by Poisson averaging
could perhaps affect which of the supported phenomena actually occurs in a spe-
cific model.

Dynamics and pattern formation in smooth models

So far we have concentrated on examining how Poisson averaging affects predic-
tions of persistence or coexistence versus extinction. There are two reasons for
doing that. First, we believe that the issue of persistence is fundamental and thus
most of our research in recent years has been devoted to that topic. Second, because
of the principle “invasibility implies coexistence” (which can be made rigorous via
the notion of permanence) we are able to say things about model predictions relative
to persistence by examining linearizations around equilibria where some compo-
nents are zero, and we can use the relation 8DL{f(U))/8ulu=0 = f(1) — f(0)
to study those. That approach does not tell us much about detailed dynamics or
pattern formation, but we can get some information by observing the structural
effects of Poisson averaging. The results of Section 3 show that it preserves the
product structure of terms of the form f;(U) f2(Us) and that it preserves monoto-
nicity and concavity. It has no effect on linear terms or products of the form U; U;.
Thus, it has no effect on the dynamics of Lotka-Volterra models, (The formulation
of hydrodynamic limits used by Durrett and Levin (1994) incorporates some extra
spatial structure in the form of local interaction neighborhoods which is not present
in simple Poisson averaging, and which has quantitative effects even in Lotka-Vol-
terra models. We will return to that topic later.) For predator-prey models of the
form

d

-;7] = [eg(uz) —du

d

—51-2- = r[1 = (ua/I)uz — gluz)uy

applying Poisson averaging keeps the predator isocline as a vertical line, and if g
has the geometric features of concavity, monotonicity, and saturation (e.g. if g is
Holling II) then those features and hence the shape of the prey isocline will be pre-
served. Thus, the dynamic phenomena that the system might support are the same
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with and without Poisson averaging, although the quantitative effects of averaging
might shift the model predictions from one regime to another. In models involving
terms that are sigmoid or have more complicated nonlinear behavior the situation
is less clear. For example, if g(U) > 0 is concave, increasing, and saturating, with
g(0) = 0, then the model dU/dt = g(U) — aU can have at most one positive
equilibriom. If g(U) is sigmoid then multiple equilibria are possible. If Poisson
averaging destroys the sigmoid property (which is possible) then it might eliminate
the possibility of multiple equilibria.

The situation in the case of pattern formation is somewhat similar. For two-
dimensional systems, pattern formation via diffusive instabilities (i.e. the Turing
mechanism) typically cannot occur unless there is some type of activator/inhabitor
mechanism present. Such mechanisms are present in predator-prey models but are
ruled out by monotonicity in most models for two competitors or mutualists. Pois-
son averaging preserves monotonicity, so it generally will not give rise to pattern
formation in models for two competitors or mutualists. However, if a predator-prey
model predicts pattern formation for some parameter values then the quantitative
effects of Poisson averaging might shift the model into or out of the regime where
pattern formation occurs. For models involving three or more species the general
issue of pattern formation becomes much more complicated. The same general
considerations apply as far as Poisson averaging is concerned. In models where
pattern formation is possible the quantitative effects of Poisson averaging might
influence whether or not it occurs. (Whether the effect is more likely to favor or to
inhibit pattern formation is not clear.) In simple models whose qualitative structure
does not allow pattern formation Poisson averaging is unlikely to induce it. The
effects on models with complicated nonlinearities can be more dramatic.

Nonsmooth models

The most profound effects of Poisson averaging occur in the context of nonsmooth
models. The hawk-dove game studied by Durrett and Levin (1994) and described
in Example 2 of Section 3 is an example of such models. In ecology the best-known
nonsmooth models are ratio-dependent predator-prey models, which have been the
source of some controversy. Nonsmooth models are also used in epidemiology.
If a population is divided into a susceptible class S and an infected class /, then
under the assumption that the total rate of contacts between individuals is fixed,
the rate at which susceptibles become infected will be proportional to the fraction
of infected individuals in the population, so that dS/dt = a[l/(S+ ]S+ ---.
The term S1/(S + I) occurring in such models has the same form as some of
the terms in ratio-dependent models or the hawk-dove game. For a discussion of
epidemic models see for example (Mena-Lorca and Hethcote 1992). In standard
models for a single predator species and a single prey species the origin is typically
a saddle point and either the predators and prey coexist or the predators become
extinct while the prey persist. In ratio-dependent models there is also the possi-
bility that for initial data in a certain sector of the phase plane both predators and
prey become extinct; see (Jost et al. 1999) or (Kuang and Beretta 1998) for the
case of predator-prey models or (Durrett and Levin 1994) for similar results in the
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hawk-dove game. The reason why the origin need not be a standard node, saddle
point, or spiral point in these models is because the function xy/(x + y) is not
smooth at (0, 0). The effect of Poisson averaging is to remove the singular behavior
by smoothing such nonlinear terms. In the case of the hawk-dove game this con-
verts the origin to an ordinary saddle point (Durrett and Levin 1994), The case of
ratio-dependent predator-prey models is similar. There does not seem to be as much
discussion of singular behavior arising from ratio-dependence in the literature on
epidemic models, although the same sorts of effects could be expected there. As
shown by Example 2 and Lemma 3.10 in Section 3, the case of nonlinearities based
on U} + Uj (as opposed to alU; + bU with a # b) is especially nice from the
viewpoint of Poisson averaging because explicit calculation of the Durrett-Levin
transform is often possible.

Spatial effects in interacting particle systems

In the model formulation used by Durrett and Levin (1994), individuals may interact
with other individuals located at the same site, or they may interact with individuals
in the local neighborhood. (See section 2 of this paper for a brief discussion.) A
crucial feature of the interacting particle systems used by Durrett and Levin is that
they describe rates of interaction with other individuals, as opposed to models that
have already been rescaled so that populations interact with, say, resource densi-
ties. Thus, the correct interpretation of a local interaction neighborhood is that it
describes an area through which an individual might search for prey, competitors,
or conspecifics with which to interact. In the predator-prey context, a predator with
a larger local neighborhood will search a larger area per unit time than one with a
smaller local neighborhood. If the two predators are similar, the one that searches
over a larger area may require more energy. In comparing different types of pre-
dators that may not always be the case. Avian predators such as raptors may be
able to search larger areas per unit time at a given rate of energy expenditure than
mustelids such as weasles. In this context it does not make any sense to let the local
neighborhood size || increase indefinitely, because any individual can only visit
some finite maximum number of sites per unit time. In the context of competition,
the notion of a local interaction neighborhood seems difficult to interpret in the case
of resource competition that does not involve direct interactions between compet-
ing individuals. For interference competition where individuals of different species
may fight each other, the size of the local interaction neighborhood would reflect
the area that an individual would search for competitors to fight per unit time.

As an example of how local neighborhood interactions can be incorporated into
simple models, suppose that species 1 preys on species 2, with a simple mass-action
law describing the rate of prey consumption. Suppose the prey species grows logis-
tically in the absence of the predator, and the predator declines exponentially in the
absence of prey. Finally, suppose that increasing the size of the local interaction
neighborhood increases the predator death rate by increasing energy consumption
and exposure to hazards. These assumptions will lead to a Lotka-Volterra predator-
prey model that incorporates the size of the local neighborhood. Let 7; represent
the population of species i at site x and time ¢ for i = 1, 2. Let j;,(x) represent
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the population of species i in the local neighborhood of x at time ¢. Predators at
site x then consume prey at the rate c¢fjp, (x) and convert them to new predators
at rate ecfjy, (x). Predators at site x also die at a rate d + f|N| where |N| rep-
resents the size of the local neighborhood. Thus, the overall growth or loss rate
for the predator population at site x is [ecfja (x) — d — fIN|In:(x). Recall that .
the general machinery of hydrodynamic limits treats 7; and 7; as Poisson distrib-
uted random variables U;, U; with means u; and |N|u; respectively. Thus, for a
spatially rescaled model the interaction term for the predator should be given by
DL{ecUsUy — dU, — fIN|U} = ec|N|ujus — duy — f]N|u;. The situation is
slightly different from the prey’s perspective. A prey individual at location x may be
preyed upon by any predator in the local neighborhood. The predators at each point
x + z in the local neighborhood of x consume prey at a rate cfja,; (x + )01, (x + 2).
However, this predation is spread over the entire local neighborhood of x 4z, but the
fraction of prey (and hence the fraction of attacks) at x is given by ng, (x) /72 (x +2),
so the rate of attacks on prey at location x should be given by summing the attack
rates from each location x - z in the local neighborhood of x:

D e (x + 2m(x + D102 (6) /A2 (5 +2)) = Y emu(x + 2)72:(x)
zeN zeN

= ¢y (x)n2 (x).
Thus, the total growth rate for the prey is given by any, (x) — bna, (x)(572:(x) —
1) — ¢y (x)n (x), so in the hy({1'odynamic limit the prey’s reaction term should
be DL{aU; — bUs(Up — 1) — cU U} = auq — bu% — c|Nluquy.
The corresponding reaction-diffusion model is

a

% = D1Auy + (eclNuz — d — FINDu

ale

- = Do Auig + (a — buy — c|Nuusz. (4.8)

The model corresponding to (4.8) but without diffusion is a Lotka-Volterra pred-
ator-prey model in which the prey is always predicted to persist. The predator
is predicted to persist if it can invade the system when the prey is at its logistic
equilibrium a/b; that condition can be written as

[eca/b) — fIIN]—d >0 (4.9)

For predator persistence (4.9) requires that (eca/b) — f > 0, which can be inter-
preted as saying that if the prey were at equilibrium (a/b) the energy (and other
benefits) gained by searching a given area would exceed the energy cost (and other
risks) required to search it. Recall that f represents the cost of searching in this
model.) If (eca/b) — f > 0 but (eca/b) — f < d then we must have }NV| > 1 in
(4.9) for predator persistence. This could be interpreted as a minimum foraging area
that would be needed to sustain a predator population. Care must be taken with this
approach, however, because the size of the local neighborhood cannot be increased
arbitrarily. The size is strictly limited by the movement rate of the organisms being
modeled, even if we do not consider energy costs.
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5. Discussion
Conclusions about Poisson averaging

By interpreting Poisson averaging as a transform (which we have called the Dur-
rett-Levin transform), studying its properties, and deriving operational formulas for
it, we can make the following observations:

1.) Evensimple forms of interaction terms generally have Durrett-Levin transforms
which cannot be expressed in closed form, but only as power series. When the
Durrett-Levin transform of an interaction term can be expressed in closed form,
it usually has a different algebraic form than the original term. An important
class of exceptions are mass action terms, such as those occurring in Lotka-Vol-
terra models, whose form is unchanged by Poisson averaging, although their
coefficients may change.

2.) The operational formulas for the Durrett-Levin transform show that many of
the qualitative properties of interaction terms are preserved by Poisson aver-
aging. In particular, the Poisson averaging preserves positivity, monotonicity,
concavity or convexity, and boundedness. In the case of terms that only involve
one variable, Poisson averaging preserves limits at infinity. Even if the Dur-
rett-Levin transform of a term cannot be computed as closed form, it is usually
possible to compute the derivative of the Durrett-Levin transform at zero. These
properties sometimes make it possible to determine whether a system predicts
persistence or extinction after Poisson averaging, even if the averaged system
cannot be computed in closed form.

3.) The Durrett-Levin transform is a smoothing operator in the sense that it con-
verts bounded functions, no matter how irregular, into real analytic functions.
This is not important if the original interaction terms are smooth, but it can
be of profound importance if the interaction terms are discontinuous or un-
differentiable. In particular, Poisson averaging destroys the singularity at the
origin in ratio-dependent models and models with proportional mixing which
allows such models to display richer dynamics than similar sorts of models
with smooth interaction terms.

Conclusions about models and scaling

The effects of Poisson averaging increase with the degree of nonlinearity in the
model. Lotka-Volterra models are completely unaffected. This is not surprising
since the underlying assumption of those models is that interaction rates follow
a mass-action law, which in turn is based on the assumption that populations are
homogeneously mixed. If things are already homogeneous locally then averaging
will not have much of an effect. For simple models with smooth nonlinearities
that are monotone and concave or convex, Poisson averaging typically changes the
algebraic form of the nonlinearities and often leads to averaged terms that cannot
be expressed in closed form, but it preserves the qualitative features of concav-
ity or convexity and monotonicity. It reduces the values of concave functions and
increases the values of convex functions. Thus, for many standard models such as
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predator-prey models built from a Holling II functional response or simple nonlinear
competition models, the effects of Poisson averaging are typically similar to those
obtained by varying parameters in the original model. (A similar effect was observed
to occur via the different mechanism of slow diffusion by Cuddington and Yodzis
(2000).) In particular, we could not find any cases where Poisson averaging shifted
the predictions of a class of competition or two-consumer one-resource models
from competitive exclusion to coexistence, although it might reverse competitive
dominance. Since Poisson averaging often converts simple algebraic expressions
into functions that can be represented only as infinite series, it may be wiser to
account for the effects of spatial averaging by suitably changing coefficients rather
than by Poisson averaging provided all the nonlinearities are monotone and concave
or convex. For models with more complicated smooth nonlinearities, for example
predator-prey models with Holling III functional response, Poisson averaging can
change the qualitative properties of the nonlinearity. In the Holling III case the
sigmoid shape of the nonlinearity may or may not be preserved, and the averaged
nonlinearity will have a nonzero derivative at zero density. In rescaling such mod-
els it is wise to see how Poisson averaging affects the nonlinearities. Since Poisson
averaging can produce terms that cannot be expressed in closed form, it may be
preferable to use it to deduce the general features of the rescaled nonlinearities and
then replace them with simpler forms having the same features.

The most profound effects of Poisson averaging occur in nonsmooth models.
If a nonsmooth model has dynamic behavior that is not possible in the correspond-
ing smooth model (as in the case for the hawk-dove game and for ratio-dependent
predator-prey models), that form of dynamics will be eliminated by the smoothing
effects of Poisson averaging. (Similar effects may be relevant in epidemic models
with proportional mixing.) Thus, for rescaling nonsmooth models, it is probably
necessary to use Poisson averaging if the rescaled model is to duplicate the behav-
jor of the underlying discrete model. In the special case of nonlinearities involving
terms of the form uv/ (4 +v), which occur in the hawk-dove game and other models
with proportional mixing, the operational properties of the Durrett-Levin transform
typically allow explicit calculation of the averaged system in closed form. Thus, in
those cases, the correct approach to rescaling is to use Poisson averaging. In the case
of ratio-dependent models in general, explicit calculations may not be possible, so
an alternative approach to rescaling might be to approximate Poisson averages by
fitting simpler but qualitatively similar curves to them.

In the specific context of interacting particle systems, the additional spatial
effect of allowing organisms to interact with other individuals in nearby sites can
be incorporated into rescaled models via local interaction neighborhoods. This
notion is well established and is discussed in some detail by Durrett and Levin
(1994). In some cases it is possible to deduce potentially interesting effects on pop-
ulation interactions arising from the size of the local neighborhood, but the method
is Hmited because the underlying discrete modeling must be based on interactions
between individuals. Thus, local neighborhoods for interactions make sense for
predator-prey models, or for the hawk-dove game, because those models envision
direct interactions between individuals. It is not clear that it makes sense to talk
about models for resource competition in terms of direct interactions between com-
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petitors, so it is not clear how to properly formulate local interaction neighborhoods
in that case. In the case of predator-prey models increasing the size of the local inter-
action neighborhood may increase the per capita rate of prey consumption. In that
situation the maximum size of local neighborhood needed to sustain a predator can
be interpreted as something like a minimal homerange size needed for persistence.
Note that in the underlying interacting particle system individuals are envisioned as
moving through the entire local neighborhood and interacting with the individuals
found there in a single unit of time. Thus, there is a strict limit imposed on the pos-
sible size of the neighborhood by the movement rate of the organism. Additionally,
increasing the size of the neighborhood may entail energy costs.

We have focused our attention on the effects of Poisson averaging (and local
neighborhood interactions) on persistence. We consider that issue to be fundamen-
tal. Often it can be addressed by studying the linearizations of models at equilibria
where at least one population is zero, and it turns out to be possible to say things
about such linearizations of rescaled models even in cases where the rescaled non-
linearities cannot be expressed in closed form. Our general conclusions about the
effects of Poisson averaging on persistence also apply to pattern formation and other
aspects of dynamics. For simple smooth systems Poisson averaging preserves most
structural features and also preserves monotonicity and concavity or convexity.
Thus, it generally will not change the range of phenomena a model of that type will
support, although it may shift model predictions within that range. For more highly
nonlinear models, and especially nonsmooth models, Poisson averaging could in
principle have much more dramatic effects on dynamics and perhaps pattern for-
mation, as it does on persistence.
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Appendix

Sketch of the proof of Lemma 3.3: Properties i) and ii) are true by definition.
Properties iii) and iv) arise from the independence of the random variables {U:}.
We illustrate the proof for the case of (iv) with n = 2; the cases of general n
in iii) and iv) use the same ideas but require a bit more notation. Suppose that
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FUy, Ua) = g(Up)h(Us). We have:

DL{f} = E(f (U, U2)) = E(g(U1)h(U2))

= > gOR()IPWU =ilUs = )P(U2 = J)
i,j=0

=Y gOh(HIPW1 = )PUr = ))

i=0j=0

= [Zg(i)P(Ul = i)} Y h(NPWz =)
i=0 Jj=0

= DL{g)DL{h)}.

It is clear from the calculation that DL{g} depends only on the distribution of U1,
which in turn depends only on u}, and similarly DL{k} depends only on u3; hence
iii) follows from iv) and i).

Derivation of Example 1:

i) For f(U) =UU — 1)--- (U — k + 1) the first k terms in the series deﬁning
DL{f} are zero, so

DLUW = 1) (U —k+ D} =ukY el ™ /(G — k)l = uF.
j=k

(Note that this formula allows the computation of DL{U"} for any positive
integer m since we can write U™ interms of U, U(U = 1), UU — 1)(U —2),
U(le) (U - m-l—l))

it) DL{e Ze””e Uyl )il = Ze_"(e“u)j/j! — ele*=Du,
j=0
iii) o
DL{U/(U + D} = Z /G + Dleud /!

50
= (Z”’/J' Zu"/(j + 1)!) .

j=0

I

)e"”uj/j!
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1t is clear from the first line of the calculation that DL{f}(0) = 0. For u 5 0
we have

DLU/U + DY) = e™ | " = (1/u) | Y_w*' /G + D!
Jj=0

=e """ — (1/u)e" — 1))
=Wu+e " -D/u=1-(1- e Y/ u.

iv) DLU/U+2)) = /G +2e™"u! /]!

8

.
1l
<

G+ Dle ™ ul /G +2)0

e

.
b

The calculation can be completed by writing j(j + 1) interms of (j +2)(j + 1)
and (j +2). Wehave j(j +1) = (j +2)(j + 1) —2(j +2) + 2 so that

DLIU/WU +2) = Y 1A/ — @/G + D) + @/( +2)Dle™u.
Jj=1

After some shifting of indices and algebraic manipulations we obtain for u 7 0
DL{U/U +2)) = [(uz — 42— 2e~“] Ju?.

A similar calculation can be used for U/(U + k) if k is a positive integer but this
method does not seem to apply to other values of k.

Derivation of Example 2:

Let f(Uy, Up) = U Up/(Uy + Uz = 1) if Uy, U = 1, f(0,U) = f(U1,0) =0.
We have

oo o0

DL{f} =Y D Uj/G+j—Dle ™ e ubul /ilj!.

i=1j=1

This sum can be viewed as being taken first in the “j” direction and then the “/”
direction. It is also possible to sum first over the set i + j = k for each fixed k > 2
and then sum over k, i.e. sum first in the “diagonal” direction then over k. Doing
so yields

o« k-1 —Ufp— P
_ Jk = )] erte uyuy !
DL{f}~;j§[ k— 1 } Ghtk =t
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(j is summed from 1 to k — 1 since the j =0, j = k terms would be zero.) Some
algebra yields

DL{f}= iuluze‘“le—uz k= 2)!L£{—1u§—juI
G G-DE G =DIk- DY

We have (using the binomial expansion theorem)

"2":‘ k —2)! ol keje1 SRk -2 lubuk 1 4 )2
" u = =
LG Dlk—j -2 "2 Ok—2—g1 _wrh
80 that
e —Uy ,— U k—2
uge Me 2 (g + ug)
DL =
() :l:-; k= 1)
(9]
= [LtlLtze"("'+"2)/(Ltl + uz)] Z [(ul +ug)* )k — 1)!}
k=2

I

__f‘_l_u_z_ e—("t+“2) [e(u;—kuz) . 1}
Uy -+ U

= i [1 — e—(tn-H:z)] )
Uy 4+ un

This type of calculation can also be done in more explicitly probabilistic terms by
taking conditional expectations of U1 Uy /(U1 4 Uz —1) conditioned on U+ Uy = k
then summing appropriately over k (see (Durrett and Levin 1994)) but the key idea
of summing over Uy + U, = k is the same.

Proof of Lemma 3.5 (forn = 2, k = 1; the general case is essentially the same.)
By (3.1a),

oo o0

SIDL{f (U, U} = Yy fG, Dubude™/iljL.

j=0i=0
Differentiating, we have

e""DL{f (U, Ua)} + e Td%;DL{f(Ul, U2))

= >N Fl T e /G — 1)1

J=0i=1

(e ol ¢] .
=YY fU+1, pufuie /el

j=08=0
=" DL{f(U) + 1, Ua)).

Dividing by ¢! and rearranging terms yields (3.3).
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Proof of Lemma 3.7: Foru; >0, k=1,...,n, wehave
o0
IDL{f}l < Z Gyl ulne™ e e i lin) g
i, ill=0
Z fou"u'zz... dngm T iy i = o
iy dg=0

Proof of Lemma 3.8: We shall prove that if limsupf(U) < o then

U-—co
limsup DL{f}(u) < o. A similar analysis shows that if lim inff(U) = ¢ then
hm 1nf’DL{ f}w) > «. From those observations it follows that 1f hm f U)=«
thena > limsupDL{f}(u) > hm 1nfDL{f}(u) > « so that hm ’DL{f}(u) = «.

=00

Suppose lim sup f(U) = «. For any € > O there exists N such that f(U) <
U—sco
a +e¢for U > N. We have

N [ele]
DL{f)w) = ey _fl)u'/i!+e™" > /i

i=0 i=N+1
N w .
e (Zf(i)u‘]i!) +e " Z CEXIA
i=N+1

f(i)u"/i!) +e M (a+ e)Zu"/i!

<= ()
N
<Zf(i)ui/i!) +o+e.

i=1

The term ™" (Zf(i)u’]i!) is in the form of e~ times a polynomial in u, so

N
lim e™¥ (Zf(i)tti/i!) = 0. Thus, there exists a value N so thatif u > Ny
o =

then e™ <Zf(l)u /z') <e. Foru> Nowehave DL{f}(u) <e+ (¢ +¢) =

o + 2¢. It follows that lim supDL{f}(u) < « + 2¢. Since € > 0 was arbitrary,
U—o
lHmsupDL(f}(u) < a.

H—> 00
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Sketch of the proof of Lemma 3.9:
Suppose n = 2 and k = 1. (The general case is similar.)

o000
DL{ULf(Ur, U2)} = Y if (i, jufuse ™ e ™2 /il j!

i=0 j=0

o000 o
=D D Sl Dujuge™e™/G — D!

i=1j=0

xX )
= ZZf(@ + 1, puitulem e /01 1
¢=0j=0

= DL{f(U; + 1, Uz)}.

Proof of Lemma 3.10: By (3.1a) we have

o0 X
DL{f (U + U2}y, ug) = Yy e~ (i 4 ufus/iljl.
i=0j=0

Rearranging the order of summation so that we sum first over all terms of the same
degree yields

o k
DL{f (U1 + U}y, u2) = Yy e+ flyufus™ /il(k — i)!

k=0i=0
o k ) )
=3 [e—<ul+"2>f(k)/k!] S ktuub™ i1k — )1

so by the binomial expansion theorem,

DL{f (U1 + U}, uz) = Y e D £y (1 + u2)*/k!
k=0

= DL{f(U)}(u1 + u2).



